1,349 research outputs found

    The Pseudogap in La(2-x)Sr(x)CuO(4): A Raman Viewpoint

    Full text link
    We report the results of Raman scattering experiments on single crystals of La(2-x)Sr(x)CuO(4) [La214] as a function of temperature and doping. In underdoped compounds low-energy B1g spectral weight is depleted in association with the opening of a pseudogap on regions of the Fermi surface located near (pi, 0) and (0, pi). The magnitude of the depletion increases with decreasing doping, and in the most underdoped samples, with decreasing temperature. The spectral weight that is lost at low-energies (omega < 800 cm-1) is transferred to the higher energy region normally occupied by multi-magnon scattering. From the normal state B2g spectra we have determined the scattering rate Gamma(omega, T) of qausiparticles located near the diagonal directions in k-space, (pi/2, pi/2) regions. In underdoped compounds, Gamma(omega, T) is suppressed at low temperatures for energies less than Eg(x) ~ 800 cm-1. The observed doping dependence of the two-magnon scattering and the scattering rate suppression thus suggest that the pseudogap is characterized by an energy scale Eg ~ J, where J is the antiferromagnetic super-exchange energy. Comparison with the results from other techniques provides a consistent picture of the pseudogap in La214.Comment: 6 pages, 5 figures, minor revisions include correct form of the B2g Raman response function and new figures of the recalculated B2g scattering rate. Presented at the APS March99 Meeting, accepted for publication in the Canadian Journal of Physic

    Residual interaction effects on deeply bound pionic states in Sn and Pb isotopes

    Full text link
    We have studied the residual interaction effects theoretically on the deeply bound pionic states in Pb and Sn isotopes. We need to evaluate the residual interaction effects carefully in order to deduce the nuclear medium effects for pion properties, which are believed to provide valuable information on nuclear chiral dynamics. The s- and p-wave πN\pi-N interactions are used for the pion-nucleon residual interactions. We show that the complex energy shifts are around [(10-20)+i(2-7)]keV for 1s states in Sn, which should be taken into account in the analyses of the high precision data of deeply bound pionic 1s1s states in Sn isotopes.Comment: REVTEX4, 6 pages, 5 tables, Submitted to Phys. Rev. C, Some explanations are added in Version

    Theory of standing spin waves in finite-size chiral spin soliton lattice

    Full text link
    We present a theory of standing spin wave (SSW) in a monoaxial chiral helimagnet. Motivated by experimental findings on the magnetic field-dependence of the resonance frequency in thin films of Cr{}Nb3_{3} S6{}_{6}[Goncalves et al., Phys. Rev. B95, 104415 (2017)], we examine the SSW over a chiral soliton lattice (CSL) excited by an ac magnetic field applied parallel and perpendicular to the chiral axis. For this purpose, we generalize Kittel-Pincus theories of the SSW in ferromagnetic thin films to the case of non-collinear helimagnet with the surface end spins which are softly pinned by an anisotropy field. Consequently, we found there appear two types of modes. One is a Pincus mode which is composed of a long-period Bloch wave and a short-period ripple originated from the periodic structure of the CSL. Another is a short-period Kittel ripple excited by space-periodic perturbation which exists only in the case where the ac field is applied perpendicular the chiral axis. We demonstrate that the existence of the Pincus mode and the Kittel ripple is consistent with experimentally found double resonance profile.Comment: 17 pages, 14 figure

    Performance measurements of mixed data acquisition and LAN traffic on a credit-based flow-controlled ATM network

    Get PDF

    Interlayer magnetoresistance due to chiral soliton lattice formation in hexagonal chiral magnet CrNb3S6

    Full text link
    We investigate the interlayer magnetoresistance (MR) along the chiral crystallographic axis in the hexagonal chiral magnet CrNb3S 6. In a region below the incommensurate-commensurate phase transition between the chiral soliton lattice and the forced ferromagnetic state, a negative MR is obtained in a wide range of temperature, while a small positive MR is found very close to the Curie temperature. Normalized data of the negative MR almost falls into a single curve and is well fitted by a theoretical equation of the soliton density, meaning that the origin of the MR is ascribed to the magnetic scattering of conduction electrons by a nonlinear, periodic, and countable array of magnetic soliton kinks. © 2013 American Physical Society

    Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscopy

    Get PDF
    We demonstrate that light-induced heat pulses of different duration and energy can write skyrmions in a broad range of temperatures and magnetic field in FeGe. Using a combination of camera-rate and pump-probe cryo-Lorentz Transmission Electron Microscopy, we directly resolve the spatio-temporal evolution of the magnetization ensuing optical excitation. The skyrmion lattice was found to maintain its structural properties during the laser-induced demagnetization, and its recovery to the initial state happened in the sub-{\mu}s to {\mu}s range, depending on the cooling rate of the system

    Presence of a chiral soliton lattice in the chiral helimagnet MnTa3_{3}S6_{6}

    Full text link
    Chiral helimagnetism was investigated in transition-metal intercalated dichalcogenide single crystals of MnTa3_3S6_6. Small-angle neutron scattering (SANS) experiments revealed the presence of harmonic chiral helimagnetic order, which was successfully detected as a pair of satellite peaks in the SANS pattern. The magnetization data are also supportive of the presence of chiral soliton lattice (CSL) phase in MnTa3_3S6_6. The observed features are summarized in the phase diagram of MnTa3_3S6_6, which is in strong contrast with that observed in other dichalcogenides such as CrNb3_3S6_6 and CrTa3_3S6_6. The presence of the remanent state provides tunable capability of the number of chiral solitons at zero magnetic field in the CSL system, which may be useful for memory device applications.Comment: 6 pages, 6 figure
    corecore